Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 15(2)2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36851640

RESUMO

Extensive and multiple drug resistance in P. aeruginosa combined with the formation of biofilms is responsible for its high persistence in nosocomial infections. A sequential method to devise a suitable phage cocktail with a broad host range and high lytic efficiency against a biofilm forming XDR P. aeruginosa strain is presented here. Out of a total thirteen phages isolated against P. aeruginosa, five were selected on the basis of their high lytic spectra assessed using spot assay and productivity by efficiency of plating assay. Phages, after selection, were tested individually and in combinations of two-, three-, four-, and five-phage cocktails using liquid infection model. Out of total 22 combinations tested, the cocktail comprising four phages viz. φPA170, φPA172, φPA177, and φPA180 significantly inhibited the bacterial growth in liquid infection model (p < 0.0001). The minimal inhibitory dose of each phage in a cocktail was effectively reduced to >10 times than the individual dose in the inhibition of XDR P. aeruginosa host. Field emission-scanning electron microscopy was used to visualize phage cocktail mediated eradication of 4-day-old multi-layers of XDR P. aeruginosa biofilms from urinary catheters and glass cover slips, and was confirmed by absence of any viable cells. Differential bacterial inhibition was observed with different phage combinations where multiple phages were found to enhance the cocktail's lytic range, but the addition of too many phages reduced the overall inhibition. This study elaborates an effective and sequential method for the preparation of a phage cocktail and evaluates its antimicrobial potential against biofilm forming XDR strains of P. aeruginosa.


Assuntos
Bacteriófagos , Infecção Hospitalar , Humanos , Pseudomonas aeruginosa , Biofilmes , Bioensaio
2.
Can J Microbiol ; 68(12): 731-746, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36174234

RESUMO

Emergence of multiple drug resistant (MDR) strains of Acinetobacter baumannii and a withering drug discovery pipeline necessitates the search for effective alternatives to replace or synergize with currently used antibiotics. In this report, we have described the synergy assessment of a virulent Acinetobacter baumannii phage φAB182 with a wide range of antibiotics. Myophage φAB182 was isolated from sewage against MDR A. baumannii and exhibited maximum stability at 25 °C and pH 7. It also had a short latent period of 9 min with a large burst size of 287. The phylogenetic analysis of its major capsid protein gene indicated an 84.15% similarity to the lytic A. baumannii phage Acj9. In the presence of antibiotics, phage φAB182 showed the highest synergy (p < 0.0001) with colistin, followed by polymixin B, ceftazidime and cefotaxime and this synergistic effect was further validated by time kill kinetics. The combined action of phage φAB182 with colistin, polymixin B, ceftazidime and cefotaxime was also synergistic for the eradication of biofilms formed by A. baumannii as measured by MBECcombination/MBECantibiotic values (<0.25). We thus propose bacteriophage φAB182 as a potential antibacterial candidate in combination therapy. The findings from this study strongly support the use of phage antibiotic synergy for the successful treatment of biofilm forming MDR A. baumannii infections.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Bacteriófagos , Humanos , Acinetobacter baumannii/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Colistina/farmacologia , Colistina/uso terapêutico , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Ceftazidima/farmacologia , Ceftazidima/uso terapêutico , Bacteriófagos/genética , Filogenia , Testes de Sensibilidade Microbiana , Sinergismo Farmacológico , Biofilmes , Cefotaxima/farmacologia , Cefotaxima/uso terapêutico , Farmacorresistência Bacteriana Múltipla
3.
Virus Res ; 321: 198909, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36057417

RESUMO

Combination therapy of bacteriophages and antibiotics requires careful selection of specific antibiotics as it is crucial towards determining the success of phage therapy to treat multiple drug-resistant bacterial infections. So, we examined how different antibiotics can affect phage lytic activity when used in combination against targeted bacteria. Various antibiotics targeting bacterial protein synthesis pathways were tested for their bactericidal action in combination with bacteriophages of Acinetobacter baumannii (φAB145, φAB182), Staphylococcus aureus (φSA115, φSA116) and Salmonella Typhimurium (φST143, φST188). The phages displayed highly significant antagonism with most of the protein/ribosomal machinery targeting antibiotics: φSA115 (13/13); φSA116 (13/13); φST143 (11/13); φAB145 (11/13); φST188 (9/13); φAB182 (7/13). To validate this antagonistic effect, synergy assessment of these phages with gentamicin (GEN) and tetracycline (TE) was performed using time kill curve assays and counting the remaining viable bacterial cells at the end of the experiment. An increase in bacterial turbidity in phage-antibiotic combination groups was observed as compared to the treatment with phages individually. Also, GEN exhibited 4.22, 5.90, 2.02, 3.15, 2.68, and 2.60 log proliferation in viable cell count, respectively, for φSA115, φSA116, φST145, φAB182, φST143 and φAB188 in combination group in comparison to their individual actions. TE supplementation also led to 2.40, 4.90, 1.61, 2.73, 3.93, and 1.81 log increments in viable bacterial count when combined with φSA115, φSA116, φST145, φAB182, φST143 and φAB188, respectively. This study concludes that antibiotics targeting the bacterial protein biosynthetic machinery may lead to a reduction in the lytic activity of bacteriophages, thus lowering their therapeutic potential. Hence, such compounds must be carefully screened before their employment in combination treatment regimens.


Assuntos
Bacteriófagos , Antibacterianos/farmacologia , Bactérias , Proteínas de Bactérias , Bacteriófagos/genética , Gentamicinas , Tetraciclina
4.
Zoonoses Public Health ; 69(4): 259-276, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35355422

RESUMO

Trypanosomes are the hemoflagellate kinetoplastid protozoan parasites affecting a wide range of vertebrate hosts having insufficient host specificity. Climatic change, deforestation, globalization, trade agreements, close association and genetic selection in links with environmental, vector, reservoir and potential susceptible hosts' parameters have led to emergence of atypical human trypanosomosis (a-HT). Poor recording of such neglected tropical disease, low awareness in health professions and farming community has approached a serious intimidation for mankind. Reports of animal Trypanosoma species are now gradually increasing in humans, and lack of any compiled literature has diluted the issue. In the present review, global reports of livestock and rodent trypanosomes reported from human beings are assembled and discrepancies with the available literature are discussed along with morphological features of Trypanosoma species. We have described 21 human cases from the published information. Majority of cases 10 (47%) are due to T. lewisi, followed by 5 (24%) cases of T. evansi, 4 (19%) cases of T. brucei and 1 (5%) case each of T. vivax and T. congolense. Indian subcontinent witnessed 13 cases of a-HT, of which 9 cases are reported from India, which includes 7 cases of T. lewisi and 2 cases of T. evansi. Apart from, a-HT case reports, epidemiological investigation and treatment aspects are also discussed. An attempt has been made to provide an overview of the current situation of atypical human trypanosomosis caused by salivarian animal Trypanosoma globally. The probable role of Trypanosoma lytic factors (TLF) present in normal human serum (NHS) in providing innate immunity against salivarian animal Trypanosoma species and the existing paradox in medical science after the finding on intact functional apolipoprotein L1 (ApoL1) in Vietnam T. evansi Type A case is also discussed to provide an update on all aspects of a-HT. Insufficient data and poor reporting in Asian and African countries are the major hurdle resulting in under-reporting of a-HT, which is a potential emerging threat. Therefore, concerted efforts must be directed to address attentiveness, preparedness and regular surveillance in suspected areas with training of field technicians, medical health professionals and veterinarians. Enhancing a one health approach is specifically important in case of trypanosomosis.


Assuntos
Trypanosoma , Tripanossomíase , Animais , Apolipoproteína L1 , Humanos , Índia , Gado , Tripanossomíase/epidemiologia , Tripanossomíase/veterinária , Vietnã
5.
Antibiotics (Basel) ; 12(1)2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36671226

RESUMO

Trueperella pyogenes is a Gram-positive opportunistic pathogen that causes severe cases of mastitis, metritis, and pneumonia in a wide range of animals, resulting in significant economic losses. Although little is known about the virulence factors involved in the disease pathogenesis, a comprehensive comparative genome analysis of T. pyogenes genomes has not been performed till date. Hence, present investigation was carried out to characterize and compare 19 T. pyogenes genomes originating in different geographical origins including the draftgenome of the first Indian origin strain T. pyogenes Bu5. Additionally, candidate virulence determinants that could be crucial for their pathogenesis were also detected and analyzed by using various bioinformatics tools. The pan-genome calculations revealed an open pan-genome of T. pyogenes. In addition, an inventory of virulence related genes, 190 genomic islands, 31 prophage sequences, and 40 antibiotic resistance genes that could play a significant role in organism's pathogenicity were detected. The core-genome based phylogeny of T. pyogenes demonstrates a polyphyletic, host-associated group with a high degree of genomic diversity. The identified core-genome can be further used for screening of drug and vaccine targets. The investigation has provided unique insights into pan-genome, virulome, mobiliome, and resistome of T. pyogenes genomes and laid the foundation for future investigations.

6.
PLoS One ; 16(8): e0255612, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34411120

RESUMO

Salmonella enterica serovar Gallinarum biovar Pullorum (bvP) and biovar Gallinarum (bvG) are the etiological agents of pullorum disease (PD) and fowl typhoid (FT) respectively, which cause huge economic losses to poultry industry especially in developing countries including India. Vaccination and biosecurity measures are currently being employed to control and reduce the S. Gallinarum infections. High endemicity, poor implementation of hygiene and lack of effective vaccines pose challenges in prevention and control of disease in intensively maintained poultry flocks. Comparative genome analysis unravels similarities and dissimilarities thus facilitating identification of genomic features that aids in pathogenesis, niche adaptation and in tracing of evolutionary history. The present investigation was carried out to assess the genotypic differences amongst S.enterica serovar Gallinarum strains including Indian strain S. Gallinarum Sal40 VTCCBAA614. The comparative genome analysis revealed an open pan-genome consisting of 5091 coding sequence (CDS) with 3270 CDS belonging to core-genome, 1254 CDS to dispensable genome and strain specific genes i.e. singletons ranging from 3 to 102 amongst the analyzed strains. Moreover, the investigated strains exhibited diversity in genomic features such as virulence factors, genomic islands, prophage regions, toxin-antitoxin cassettes, and acquired antimicrobial resistance genes. Core genome identified in the study can give important leads in the direction of design of rapid and reliable diagnostics, and vaccine design for effective infection control as well as eradication. Additionally, the identified genetic differences among the S. enterica serovar Gallinarum strains could be used for bacterial typing, structure based inhibitor development by future experimental investigations on the data generated.


Assuntos
Proteínas de Bactérias/genética , Genômica/métodos , Doenças das Aves Domésticas/diagnóstico , Salmonelose Animal/diagnóstico , Salmonella enterica/genética , Animais , Galinhas , Índia/epidemiologia , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/microbiologia , Salmonelose Animal/epidemiologia , Salmonelose Animal/genética , Salmonelose Animal/microbiologia , Salmonella enterica/classificação , Salmonella enterica/isolamento & purificação , Sorogrupo
7.
J Equine Sci ; 29(1): 25-31, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29593446

RESUMO

Bordetella bronchiseptica is a well-known Gram-negative bacterial pathogen causing a plethora of diseases in different animals. Although its infection has been reported from pigs and dogs in India, no report of B. bronchiseptica from horses is described. We report for the first time, isolation, identification and characterization of strains of B. bronchiseptica from respiratory infection in horses from different states in India. The antimicrobial susceptibility testing showed resistance to penicillins, ceftazidime, and chloramphanicol. The virulence capability of the strains was confirmed by sequencing genes such as adenylate cyclase toxin (cyaA), bordetella virulence gene (bvgA) and by PCR detection of flagellin gene (fla). We demonstrate the involvement of B. bronchiseptica strains in respiratory tract infection in horses in India.

8.
Virus Genes ; 54(1): 160-164, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29116575

RESUMO

A virulent Aeromonas veronii biovar sobria and the corresponding novel, lytic bacteriophage (VTCCBPA5) were isolated from village pond water. The phage was found to belong to family Podoviridae. PCR analysis of major capsid protein gene confirmed its classification to T7-like genus. The protein profiling by SDS-PAGE indicated the major structural protein to be ~ 45 kDa. The phage (VTCCBPA5) is host specific and is stable over a range of pH (6-10) and temperatures (4-45 °C). On the basis of restriction endonuclease analysis combined with prediction mapping, it was observed to vary significantly from previously reported podophages of Aeromonas sp., viz. phiAS7 and Ahp1. The phylogenetic analysis on the basis of PCR-amplified segment of DNA polymerase gene of phage revealed it being an outgroup from podophages of Klebsiella sp. and Pseudomonas sp. though a small internal fragment (359 bp) showed the highest identity (77%) with Vibrio sp. phages. Thus, this is the first report of a novel Podoviridae phage against A. veronii. It expands the assemblage of podophages against Aeromonas sp. and BPA5 could be potentially useful in biocontrol of environmentally acquired Aeromonas veronii infections.


Assuntos
Aeromonas veronii/isolamento & purificação , Aeromonas veronii/virologia , Podoviridae/crescimento & desenvolvimento , Podoviridae/isolamento & purificação , DNA Viral/genética , Eletroforese em Gel de Poliacrilamida , Concentração de Íons de Hidrogênio , Viabilidade Microbiana/efeitos da radiação , Peso Molecular , Filogenia , Mapeamento Físico do Cromossomo , Reação em Cadeia da Polimerase , Temperatura , Proteínas Virais/análise , Proteínas Virais/química , Proteínas Virais/genética , Microbiologia da Água
9.
Artigo em Inglês | MEDLINE | ID: mdl-27260812

RESUMO

Swinepox virus (SWPV), a member of the genus Suipoxvirus causes generalized pock-like lesions on the body of domestic and wild pigs. Although outbreak has been reported in India since 1987, virus isolation and genetic characterization remained elusive. In September 2013, an outbreak of acute skin infection occurred in piglets in a commercial piggery unit at Rohtak district in Haryana, India. The presence of SWPV in scab samples collected from piglets succumbed to infection was confirmed by virus isolation, PCR amplification of SWPV-specific gene segments and nucleotide sequencing. Phylogenetic analysis of host-range genes of the SWPV revealed that the Indian isolate is genetically closely related to reference isolate SWPV/pig/U.S.A/1999/Nebraska. To the best of our knowledge this is the first report on isolation and genetic characterization of SWPV from pigs in India.


Assuntos
Especificidade de Hospedeiro , Infecções por Poxviridae/veterinária , Suipoxvirus/genética , Suipoxvirus/isolamento & purificação , Doenças dos Suínos/virologia , Animais , Repetição de Anquirina/genética , Sequência de Bases , Surtos de Doenças , Índia/epidemiologia , Filogenia , Infecções por Poxviridae/epidemiologia , Infecções por Poxviridae/virologia , Suínos/virologia
10.
J Basic Microbiol ; 56(4): 432-7, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26748732

RESUMO

A bacteriophage (VTCCBPA6) against a pathogenic strain of Aeromonas hydrophila was isolated from the sewage of an organized equine breeding farm. On the basis of TEM analysis, phage belonged to family Myoviridae. PCR amplification and sequence analysis of gp23 gene (encoding for major capsid protein) revealed phylogenetic resemblance to T4 like virus genus. Protein profiling by SDS-PAGE also indicated its resemblance to T4 like phage group. However, the comparison of its gp23 gene sequence with previously reported phages showed similarity with T4-like phages infecting Enterobacteriaceae instead of Aeromonas spp. Thus, to our knowledge, this report points toward the fact that a novel/evolved phage might exist in equine environment against A. hydrophila, which can be potentially used as a biocontrol agent.


Assuntos
Aeromonas hydrophila/virologia , Bacteriófagos/isolamento & purificação , Doenças dos Cavalos/microbiologia , Aeromonas hydrophila/patogenicidade , Animais , Bacteriófagos/classificação , Bacteriófagos/genética , Bacteriófagos/ultraestrutura , Proteínas do Capsídeo/genética , DNA Viral/genética , Fazendas , Genoma Viral , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/terapia , Infecções por Bactérias Gram-Negativas/veterinária , Doenças dos Cavalos/terapia , Doenças dos Cavalos/virologia , Cavalos , Especificidade de Hospedeiro , Myoviridae/classificação , Myoviridae/isolamento & purificação , Esgotos/microbiologia
11.
PLoS One ; 10(11): e0143094, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26587990

RESUMO

Equine influenza viruses (EIV)-H3N8 continue to circulate in equine population throughout the world. They evolve by the process of antigenic drift that leads to substantial change in the antigenicity of the virus, thereby necessitating substitution of virus strain in the vaccines. This requires frequent testing of the new vaccines in the in vivo system; however, lack of an appropriate laboratory animal challenge model for testing protective efficacy of equine influenza vaccine candidates hinders the screening of new vaccines and other therapeutic approaches. In the present investigation, BALB/c mouse were explored for suitability for conducting pathogenecity studies for EIV. The BALB/c mice were inoculated intranasally @ 2×106.24 EID50 with EIV (H3N8) belonging to Clade 2 of Florida sublineage and monitored for setting up of infection and associated parameters. All mice inoculated with EIV exhibited clinical signs viz. loss in body weights, lethargy, dyspnea, etc, between 3 and 5 days which commensurate with lesions observed in the respiratory tract including rhinitis, tracheitis, bronchitis, bronchiolitis, alveolitis and diffuse interstitial pneumonia. Transmission electron microscopy, immunohistochemistry, virus quantification through titration and qRT-PCR demonstrated active viral infection in the upper and lower respiratory tract. Serology revealed rise in serum lactate dehydrogenase levels along with sero-conversion. The pattern of disease progression, pathological lesions and virus recovery from nasal washings and lungs in the present investigations in mice were comparable to natural and experimental EIV infection in equines. The findings establish BALB/c mice as small animal model for studying EIV (H3N8) infection and will have immense potential for dissecting viral pathogenesis, vaccine efficacy studies, preliminary screening of vaccine candidates and antiviral therapeutics against EIV.


Assuntos
Doenças dos Cavalos/virologia , Vírus da Influenza A Subtipo H3N8/patogenicidade , Infecções por Orthomyxoviridae/virologia , Animais , Modelos Animais de Doenças , Doenças dos Cavalos/patologia , Cavalos/virologia , Vírus da Influenza A Subtipo H3N8/imunologia , Camundongos , Infecções por Orthomyxoviridae/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...